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Abstract

Derby Dome, a doubly plunging anticline (7 £ 3 km) on the eastern flank of the Wind River Range, Wyoming, trends NW–SE in response

to the regional NE–SW directed shortening of the Cretaceous–Eocene Laramide orogeny. Mesozoic sediments are exposed around the fold

hinge above an east-dipping thrust fault that offsets Archean crystalline rocks at depth. Stress and strain ellipsoidal data were determined

through the measurement of mechanically twinned calcite in limestones (Triassic Alcova through J–K Morrison Formation rocks; 13

samples), calcite cements (5 samples), and synfolding calcite veins (16 samples) around the northern half of the fold. On the outer limbs of

the fold the maximum shortening strain axis (23.5%, 15% NEVs) in the limestones and cements is sub-horizontal, layer-parallel and normal

(NE–SW) to the fold hinge reflecting regional Sevier–Laramide shortening. This regional layer-parallel strain fabric is rotated into a fold

axis-parallel orientation (NW–SE) near the fold hinge indicating that significant rotations occurred during folding. Synfolding calcite veins,

of varying orientations, also preserve a local sub-horizontal, hinge-parallel shortening strain (24.0%, 17% NEVs), suggesting that the

regional Laramide stress and strain field was locally rotated into parallelism with the fold during shortening and displacement on the

underlying thrust fault. In both the country rock, cement and vein data sets, the strain overprint noise (NEVs) increases toward the fold hinge.

Inferred differential stress magnitudes are also higher for the vein calcite than for the country rock limestones or cements, and there is no

interpretable pattern around the fold (avg. ¼ 560 bars, range of 240–2000 bars). Fracture measurements (n ¼ 74) in different lithologies

have different orientations on each side of the adjacent Dallas Dome Fold suggesting layer-parallel rotation during folding, or active

fracturing occurred uniquely on each fold limb.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Mesozoic–early Cenozoic deformation of the western

margin of North America is characterized by the formation

of the Idaho–Wyoming fold-and-thrust belt (Armstrong and

Oriel, 1965; Wiltschko and Dorr, 1983), the proximal Green

River foreland basin (Dorr et al., 1977; Jordan, 1981), and

the distal foreland basins and Laramide crystalline uplifts

(Gries, 1983; Oldow et al., 1989). The older, thin-skinned

Sevier portion of the deformation occurred near the margin

with thrust translation directed eastward, whereas the

younger, basement-involved Laramide uplifts and basins

localized within continental North America reflect crustal

shortening generally directed to the ENE related to docking

and dextral translation of accreted terranes (see Gries, 1983;

Bird, 1988) and probable reactivation of older basement

faults (Marshak and Paulsen, 1996; Marshak et al., 2000).

The Sevier shortening is preserved as a regional, E–W

layer-parallel shortening (LPS) calcite strain fabric and is

present as far east (.2000 km) as Minnesota in the

Cretaceous Greenhorn Limestone (van der Pluijm et al.,

1997). The LPS fabric in the autochthonous foreland is

useful in understanding deformational rotations and trans-

lations in younger structures, specifically Laramide uplifts

(Craddock, 1992; Craddock and van der Pluijm, 1999)

where synorogenic calcite veins are present.

Derby Dome is a Laramide fold structure, cored by an east-

dipping thrust on the eastern flank of the crystalline Wind

River Range (Berg, 1962; Smithson et al., 1978; Steidtmann

et al., 1983), and is part of a series of doubly-plunging en
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échelon anticlines that are cored by basement (NW–SE;

Keefer, 1970; Willis and Groshong, 1993). Mesozoic

sediments exposed around the fold include the Alcova and

Twin Creek Limestones, and calcite-cemented Nugget

sandstone. These and numerous calcite veins allow for good

sample coverage. Our goals were to: (1) analyze the rotation of

the pre-folding Sevier LPS calcite strain fabric as Derby Dome

folded and was breached by a thrust fault as the fold hinge

overtightened (e.g. fault-propagation fold; Suppe, 1983); and

(2) to observe the incremental stress-strain field preserved by

twinned calcite in syn-folding veins. Our study of folding

strains differs from previous fabric work on large-scale folds

(e.g. Carter and Friedman, 1965) and outcrop-scale folds (e.g.

Spang and Groshong, 1981; Hudleston and Tabor, 1988) in

that we have pre-folding limestone and syn-folding calcite

vein fabric data to interpret for a thick-skinned structure. This

research is similar to that of Kilsdonk and Wiltschko (1988)

for the thin-skinned Pine Mountain ramp-anticline limestones

and synorogenic calcite veins.

2. Methods

2.1. Calcite twinning

Calcite twins mechanically at low differential stresses

(,10 MPa; see Lacombe and Laurent, 1996; Ferrill, 1998),

and is largely independent of temperature and normal stress

magnitudes in the uppermost crust. Twinning is possible

along three glide planes and calcite strain-hardens once

twinned; further twinning is possible in a crystal along

either of the remaining two e{0112} planes at higher stress

levels, provided that stress is oriented .458 from the initial

stress orientation (Teufel, 1980). The application of twinned

calcite to structural and tectonic problems has been

primarily restricted to studies of limestones (e.g. Groshong,

1975; Engelder, 1979; Spang and Groshong, 1981;

Wiltschko et al., 1985; Craddock et al., 1993), calcite

veins (e.g. Kilsdonk and Wiltschko, 1988), or, more rarely,

marbles (e.g. Craddock et al., 1991). Craddock and Pearson

(1994) and Craddock et al. (1997) have studied twinning

strains in secondary calcite of basalts from DSDP Hole

433C and the Proterozoic Keweenaw rift, respectively.

Rowe and Rutter (1990) and Burkhard (1993) have recently

reviewed the variety of methods applied to utilizing twinned

calcite in a host of geologic environments.

Paleostress (paleopiezometry of Engelder (1993))

responsible for twinning can be calculated in terms of

their compressional (or tensile) orientation (Turner, 1953)

and magnitude (Jamison and Spang, 1976; Rowe and Rutter,

1990). Strain ellipsoid axis orientations are computed using

the calcite strain gage (Groshong, 1972, 1974) and are quite

accurate for strains ranging from 1 to 17% (Groshong et al.,

1984) although strain magnitudes vary greatly depending on

lithology, grain size, porosity, etc., and are a function of

twin thickness. Thin twins (,0.5 microns) are dominant in

our sample suite, which is characteristic of calcite deformed

below 200 8C (Ferrill, 1991, 1998). The calcite strain gage

technique also computes positive and negative expected

values (PEV and NEV, respectively) for all the twins in a

given thin section. A NEV for a twinned grain indicates that

this grain was unfavorably oriented relative to the stress

field that caused the majority of the grains in a given thin

section to twin. A high percentage of negative expected

values (.40%) indicates that a second, non-coaxial

twinning event occurred and these two twinning strains

(PEV and NEV groups, respectively) can be analyzed

separately (Teufel, 1980).

3. Results

3.1. Regional patterns of Western North America

Calcite strain results from limestones in the Idaho–

Wyoming thrust belt preserve a layer-parallel, thrust

transport-parallel twinning fabric that has been used to

interpret dextral transpression associated with the progress-

ive shortening and rotation within this thrust belt (Craddock,

1992) when compared with the same layer-parallel, E–W

shortening fabric preserved in the autochthonous foreland as

far east as Minnesota (Craddock and van der Pluijm, 1999).

Synorogenic calcite veins across the thrust belt record high

differential stresses and strain magnitudes (900 bars, 26%,

respectively) in a variety of orientations, which reflect local

complexities of piggyback thrusting rotations (Budai and

Wiltschko, 1987; Craddock and van der Pluijm, 1988; see

also Allmendinger, 1982; Kraig and Wiltschko, 1987;

Apotria, 1990, 1995).

3.2. Laramide uplifts and basins

Forty-four calcite strain analyses from Paleozoic lime-

stones and veins from the Beartooth, Wind River, Owl

Creek, Bighorn and Black Hills Ranges (Craddock and van

der Pluijm, 1999) compliment earlier, localized studies in

the Bighorn Mountains (Hennings, 1986a,b; Carson, 1988),

in the Teton-Gros Ventre Range (Craddock et al., 1988), and

in the Wind River Range and Wind River Basin (Willis and

Groshong, 1993). Calcite strain analyses from limestones in

the Laramide uplifts preserve a regionally consistent

,ENE–WSW LPS fabric despite, in some cases, uplift

and thrust transport from north to south (e.g. Owl Creek

Range; Varga, 1993). Strain analyses from the folds

flanking the Wind River Range (Willis and Groshong,

1993; 10 samples), including Derby Dome, record an E–W

LPS fabric with some curious rotations (see below). Strain

analyses of synorogenic calcite veins from a variety of

Laramide uplifts record sub-horizontal, N–S shortening

(Craddock and van der Pluijm, 1999).
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Fig. 1. Local and regional geologic map and stratigraphic column for the Derby Dome area. Triassic Chugwater (Trc) units are not sub-divided on the map.

Sample locations are numbered (see Table 1).
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3.3. Derby Dome and the Wind River Basin

With the backdrop of the regional E–W Sevier LPS

fabric, the younger sub-horizontal N–S Laramide vein

fabric, and the twinning results of Willis and Groshong

(1993) along the eastern flank of the Wind River Range, we

expected some complexities to the strain history of Derby

Dome. We were also aware that this would be the first

basement-cored (thick-skinned) fold studied in such detail

although Derby Dome is fairly small, and the sedimentary

cover on the crystalline corners of other basement uplifts

have been studied (e.g. Hennings, 1986a,b; Carson, 1988;

Craddock et al., 1988; see also review by Brown, 1993).

Derby Dome (4 £ 10 km) is one of five en échelon

periclinal, west-verging structures on the northeast flank of

the Wind River Range uplift (Ptasynski, 1957) also

described by Keefer (1970) (Fig. 1). Domes of this

northwest-trending series are cored and locally breeched

by an east-dipping thrust fault (a continuation of the

Sweetwater Arch thrust to the east) that offsets Archean

basement rocks and is synthetic to the Wind River thrust to

the west. At the northern end of the folds, the Eocene Wind

River Fm. (49 Ma) is offset by this fault and overlain by the

Wiggins Fm. (49–45 Ma) of the Absaroka Range bracket-

ing its age of motion, which is complimentary to the fission

track and sedimentological uplift ages of Steidtmann et al.

(1983) and Cerveny and Steidtmann (1993). Triassic–

Cretaceous sediments are exposed around Derby Dome, and

the northern half of the fold is accessible without land

issues. Thirty-four strain analyses were generated from 22

samples collected from the core (Alcova Limestone) to the

highest portion of the eastern limb (Morrison Fm.) on both

sides of the thrust that cuts the fold hinge (Fig. 1; Table 1).

3.4. Country rock and cements

Calcite strains in limestone samples (Fig. 2) east and

west of Derby Dome preserve a LPS fabric (the bedding

planes and compression axis and e1 shortening axis intersect

^208) oriented ,E–W (Craddock and van der Pluijm,

Table 1

Details of calcite twin analysis for Derby Dome

Sample e1 (%) e1 (tr and pl) NEVs (%) Diff. stress (bars) Rock unit

Veins 2 21.900 14, 74 27.8 385 Alcova Limestone

3 26.450 249, 36 14.3 244 Nugget Sandstone

6 24.460 57, 4 13.6 244 Nugget Sandstone

7a 23.330 336, 19 16.7 526 Sundance Limestone

7b 22.430 135, 41 12.5 667 Sundance Limestone

8 23.800 225, 3 28.5 667 Sundance Limestone

9 27.400 111, 3 28.6 455 Sundance Limestone

10 21.770 146, 5 11.5 670 Sundance Limestone

13 22.800 281, 80 9.1 385 Sundance Limestone

16 26.020 180, 35 7.1 263 Gypsum Springs LS

18 21.100 46, 75.9 0.0 1000 Sundance Limestone

19 21.260 117, 17 27.7 2000 Alcova Limestone

20 28.210 342, 0.2 5.9 556 CP concretion

21 28.835 186, 6 40.0 345 Nugget Sandstone

22 23.630 68, 9 25.0 286 Nugget Sandstone

Average 24.612 16.8 590

Country Rock 1 22.690 180, 21 0.0 470 Alcova Limestone

2 23.220 17, 0.7 31.8 385 Alcova Limestone

3 22.360 5,21 23.5 333 Nugget Sandstone

4 21.460 197, 66 21.1 455 Nugget Sandstone

7 23.700 163, 14 33.3 625 Sundance Limestone

8 22.340 174, 12 6.7 455 Sundance Limestone

9 24.330 41, 20 0.0 351 Sundance Limestone

10 23.140 113, 25.6 16.7 520 Sundance Limestone

14 24.770 167, 42 11.8 333 Sundance Limestone

15 21.670 353, 0 5.0 357 Sundance Limestone

18 25.590 168, 8 11.8 667 Sundance Limestone

19 26.370 171, 5 25.0 588 Alcova Limestone

22 23.900 87, 5 20.0 576 Sundance Limestone

Average 23.339 15.9 470

Cement 5 21.490 283, 56 25.0 270 Nugget Sandstone

11 22.150 1, 6 0.0 333 Morrison Sandstone

12 21.710 357,11.8 18.2 294 Sundance Limestone

17 26.304 158, 8 33.3 256 Nugget Sandstone

21 23.353 3, 15 6.3 270 Nugget Sandstone

Average 23.001 16.6 285
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Fig. 2. Photomicrograph of the Sundance Fm. limestone and cross-cutting calcite vein. Scale bar ¼ 2 mm.

Fig. 3. Lower hemisphere plots of calcite strain gage data for country rock

limestones. Great circles are bedding orientations, contoured areas are

Turner (1953) compression axes. Axes of the strain ellipsoid are e1

(maximum shortening [negative]), e2 (intermediate axis), and e3 (extension

axis [positive]). Negative expected values for each sample are plotted

outside each stereonet. See Table 1.

Fig. 4. Map view plot of e1 shortening strain axes for country rock samples,

based on Fig. 3. Steep plunges (sample 4) are indicated by an arrow and the

plunge in degrees. Inset stereonets are of the country rock and cement

shortening axes (left) and the regional twinning shortening strain pattern in

the foreland. See Table 1.
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Fig. 5. Differential stress magnitudes (bars; see Table 1) for the country

rock suite.

Fig. 6. Lower hemisphere plots of calcite strain gage data for calcite

cements. Great circles are bedding orientations, contoured areas are Turner

(1953) compression axes. Axes of the strain ellipsoid are e1 (maximum

shortening [negative]), e2 (intermediate axis), and e3 (extension axis

[positive]). Negative expected values for each sample are plotted outside

each stereonet. See Table 1.

Fig. 7. Map view plot of e1 shortening strain axes for calcite cement

samples, based on Fig. 6.

Fig. 8. Differential stress magnitudes (bars; see Table 1) for the calcite

cement suite.
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Fig. 9. Lower hemisphere plots of calcite strain gage data for calcite veins. Great circles are vein orientations, contoured areas are Turner (1953) compression

axes. Axes of the strain ellipsoid are e1 (maximum shortening [negative]), e2 (intermediate axis), and e3 (extension axis [positive]). Negative expected values

for each sample are plotted outside each stereonet. See Table 1. Inset (lower left) stereonets are plots of shortening axes and vein field orientations (poles to

planes; n ¼ 15). See Section 4.
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1999; Table 1, numbers 18, 19, 37–41), which rotates from

being hinge-normal to being hinge-parallel as one

approaches the fold axis (Figs. 3 and 4). The shortening

strain values average 23.3% and the inferred differential

stresses (Jamison and Spang, 1976) averages 470 bars (Fig.

5). Country rock and cements strains are identical (Figs.

6–8), and are very different from the cross-cutting veins, so

we consider them coeval. In both the country rock, cement

and vein data sets, the strain overprint noise (NEVs)

increases toward the fold hinge but is not large

(avg. ¼ 16%), and in all data sets the twins are thin twins.

3.5. Veins

Sparry synfolding calcite veins (16 strain analyses,

24.6%, 17% NEVs; Figs. 2 and 9–11; Table 1), of varying

orientations, preserve two interpretable fabric groups: (1)

those that can be interpreted as sub-horizontal, vein-parallel

shortening (12 results; where the compression axis contours

and e1 shortening axis intersect the plane of the vein), and

(2) non-vein-parallel shortening (the compression axis

contours and shortening axis, e1, do not intersect the plane

of the vein). The vein-parallel shortening group contains a

mix of sub-horizontal, hinge-parallel shortening strains

(samples 7a, 10, 16, 20) and sub-horizontal, hinge-normal

shortening strains (samples 2, 3, 6, 9, 13, 21, 22). The non

vein-parallel grouping includes four samples (7b, 8, 18, 20),

all with different vein orientations where the shortening axis

(e1) is at a high angle to the vein. Inferred differential stress

magnitudes (Jamison and Spang, 1976) are also higher for

the vein calcite than for the country rock limestones or

cements, but there is not a clear pattern around the fold

(avg. ¼ 560 bars, range of 240–2000 bars; Fig. 11).

3.6. Joint and fracture analysis

Dallas Dome is the northern unfaulted equivalent to

Derby Dome. The Triassic Red Creek-Nugget section is

exposed in the core of the dome making fracture

measurement ideal (n ¼ 74; Fig. 12). All the fractures are

sub-vertical and we find different populations in the same

unit on opposite sides of the dome except in the Alcova

Limestone. The west limb is dominated by a vertical

fracture set that is parallel to the regional transport direction

(Mode I; fold axis-normal) although there are other sub-

vertical populations. The east limb is dominated by a fold

axis-parallel vertical fractures.

4. Discussion

Numerous studies of folding dynamics have utilized the

presence of intergranular deformation lamellae in quartz

and/or calcite to understand fold genesis, whether within

regional (Carter and Friedman, 1965; Friedman and Stearns,

1971; Burger and Hamill, 1976; Schmid et al., 1981;

Hennings, 1986a,b; Fisher and Anastasio, 1994) or outcrop-

scale structures (Scott et al., 1965; Chapple and Spang,

1974; Spang, 1974; Groshong, 1975; Mitra, 1978; Oertel,

1980; Spang et al., 1980, 1981; Spang and Groshong, 1981;

Hudleston and Holst, 1984; Onasch, 1984; Narahara and

Fig. 10. Map view plot of e1 shortening strain axes for vein samples, based

on Fig. 9. Steep plunges (samples 2, 7b, 13, 18) are indicated by an arrow

and the plunge in degrees.

Fig. 11. Differential stress magnitudes (bars; see Table 1) for the vein

sample suite.
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Fig. 12. Lower hemisphere stereonets of rank 1 fracture data (pole to planes) from around Dallas Dome, just north of Derby Dome. Stratigraphic units are the

Red Peak, Alcova and Nugget, from bottom to top. Contour intervals are 2, 3 and 5% per 1% area.
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Fig. 13. Map view chronology (A–D) of the geologic development of Derby Dome, tracking the pre-folding e1 LPS fabric (thin lines) and syn-folding vein

(thick lines) fabrics, the fold axis, the NE-dipping Wind River thrust.
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Wiltschko, 1986; Hudleston and Tabor, 1988). The

dominant fabric preserved is a pre-folding, layer-parallel

shortening strain within the plane of fault transport (plane

strain) with little or no syn-folding strain overprint (e.g.

Spang and Groshong, 1981). Derby Dome is a thick-skinned

Laramide structure formed in the foreland where the pre-

folding LPS strain fabric can be used as a passive strain

marker during fold development. Orogenic LPS fabrics are

known to occur at great distances into the craton of a

continent (Craddock and van der Pluijm, 1989; van der

Fig. 14. Cross-sectional chronology (top is oldest, bottom is youngest) of the development of Derby Dome (Fig. 13) based on the subsurface work of Keefer

(1970) and Willis and Groshong (1993).
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Pluijm et al., 1997) and different orogenic regions preserve

unique LPS fabrics across North America (Craddock et al.,

1993) or within the individual thrust sheets of an orogenic

belt (Craddock, 1992). The twinned calcite in the country

rock of Derby Dome preserves this early (Sevier), E–W

layer-parallel fabric strain and does not record any twinning

strain overprint (low NEVs) as these sediments were folded

into the dome structure (Fig. 4, inset). As the LPS fabric was

rotated from an E–W orientation into parallelism with the

Derby fold axis (N308W), the synorogenic calcite veins

preserve a very complex stress-strain field that is not plane

strain and is very chaotic (Fig. 9, inset; see also Hennings

et al., 2000).

The pre- and syn-folding stress-strain fields recorded by

twinned calcite document rotation of the pre-folding LPS

fabric into parallelism with the fold axis with no folding

strain overprint despite a complex, non-plane strain

deformational history during folding as recorded by the

calcite veins (Figs. 13 and 14). Layer-parallel slip,

fracturing (Fig. 12), and oblique motions of the NE-dipping

Wind River thrust and various minor back-thrusts (Fig. 14)

accommodated the folding curvature and asymmetry. Our

results are consistent with those of Willis and Groshong

(1993) (24 calcite strain analyses from four folds, 13

limestones and 11 calcite cemented sandstones, low NEVs)

who found a NE–SW LPS fabric within the cylindrical

portions of the folds, and a similar LPS fabric oriented

parallel to the fold axes (NW–SE) for the plunging portions

of folds. Calcite strain analyses from the adjacent eastern

flank (dip-slope) of the Wind River Range preserve two LPS

fabrics, one oriented parallel to the range (NW–SE; Willis

and Groshong, 1993) and/or one oriented parallel to the

regional Sevier fabric (SW–NE; Craddock and van der

Pluijm, 1999).

5. Conclusions

The Sevier LPS fabric present in these sediments before

Derby Dome was folded has been rotated from an ,E–W

orientation into parallelism (NW–SE; ,1208 counter-

clockwise rotation) with the Derby fold axis. The rotation

of this fabric on both sides of the fold axis suggests that

oblique motion was important along the various thrusts and

back-thrusts (Fig. 14) that truncated the dome. An oblique

component (i.e. non-plane strain) of layer-parallel slip must

also have been important in the genesis of this fold structure.

Syn-folding calcite veins are twinned and record a complex,

non-plane strain series of stress-strain field orientations

(Fig. 9, inset stereonets) unlike the in-transport stress-strain

field of the frontal thin-skinned Pine Mountain thrust

(Kilsdonk and Wiltschko, 1988), and not everywhere in

accordance with the regional E–W Sevier or younger ,N–

S Laramide vein fabric (Craddock, 1992; Craddock and van

der Pluijm, 1999).
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